Lecture 33: Curves Defined by Parametric Equations

When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x directly in terms of y. Instead, we need to use a third variable t, called a parameter and write:

$$
x=f(t) \quad y=g(t)
$$

The set of points $(x, y)=(f(t), g(t))$ described by these equations when t varies in an interval I form a curve, called a parametric curve, and $x=f(t), y=g(t)$ are called the parametric equations of the curve. Often, t represents time and therefore we can think of $(x, y)=(f(t), g(t))$ as the position of a particle at time t.

If I is a closed interval, $a \leq t \leq b$, the point $(f(a), g(a))$ is the initial point and the point $(f(b), g(b))$ is the terminal point.
Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

Example 2 Draw and identify the parametric curve given by the parametric equations:

$$
x=t \quad y=t^{2} \quad 0 \leq t \leq \infty
$$

Example 3 Draw and identify the parametric curve given by the parametric equations:

$$
x=\sec t \quad y=\tan t \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

Example 4 Describe the parametric curve represented by the parametric equations:

$$
x=\sin 2 t \quad y=\cos 2 t \quad 0 \leq t \leq 2 \pi
$$

Note The curve in examples 1 and 4 are the same but the parametric curve are not. Because in one case the point $(x, y)=(\cos t, \sin t)$ moves once around the circle in the counterclockwise direction starting from $(1,0)$. In example 4 instead, the point $(x, y)=(\sin 2 t, \cos 2 t)$ moves twice around the circle in the clockwise direction starting from $(0,1)$.
Example 5 Find parametric equations and a parameter interval for the motion of a particle that starts at $(a, 0)$ and traces the circle $x^{2}+y^{2}=a^{2}$ twice counterclockwise.

The cycloid

A wheel of radius a rolls along a horizontal straight line. Find the parametric equations for the curve traced by a point P on the wheel's circumference. The parametric curve is called a cycloid.

